6.3 ESTIMATION OF REGRESSION PARAMETERS

Estimation of α and β by least squares method (OLS) or classical least squares (CLS) involves finding values for the estimates $\hat{\alpha}$ and $\hat{\beta}$ which will minimise the sum of the squared residuals: Σe_i^2 .

From fitted regression line:

$$Y_i = \hat{\alpha} + \hat{\beta}X + e_i$$
; we obtain:

Fig. 6.4

$$e_i = Y_i - (\hat{\alpha} + \hat{\beta}_i)$$

$$\therefore \sum_{i=1}^n e_i^2 = \sum_{i=1}^n (Y_i - \hat{\alpha} - \hat{\beta}X_i)^2$$

To find the values of α and β that minimise this sum, we have to differentiate with respect to $\hat{\alpha}$ and $\hat{\beta}$ and set the partial derivatives equal to zero.

$$\frac{\partial}{\partial \hat{\alpha}} \left[\Sigma e_i^2 \right] = -2\Sigma \left(Y_i - \hat{\alpha} - \hat{\beta} X_i \right) = 0$$
$$\frac{\partial}{\partial \hat{\beta}} \left[\Sigma e_i^2 \right] = -2\Sigma X_i \left(Y_i - \hat{\alpha} - \hat{\beta} X_i \right) = 0$$

or, equivalently,
$$\Sigma Y_i = n\hat{\alpha} + \hat{\beta}\Sigma X_i$$
 ...(6.1)

$$\sum X_i Y_i = \hat{\alpha} \sum X_i + \hat{\beta} \sum X_i^2 \qquad \dots (6.2)$$

From (6.1) we have,

٠.

$$n\hat{\alpha} = \Sigma Y_i - \hat{\beta}\Sigma X_i$$

$$\hat{\alpha} = \overline{Y} - \hat{\beta}\overline{X} \qquad ...(6.3)$$

Substituting value of $\hat{\alpha}$ in (6.2) we get

$$\Sigma X_{i}Y_{i} = (\overline{Y} - \hat{\beta}\overline{X}) \Sigma X_{i} + \hat{\beta}\Sigma X_{i}^{2}$$

$$\Sigma X_{i}Y_{i} = \overline{Y} \Sigma X_{i} - \hat{\beta}\overline{X} \Sigma X_{i} + \hat{\beta}\Sigma X_{i}^{2}$$

$$\Sigma X_{i}Y_{i} - \overline{Y} \Sigma X_{i} = \hat{\beta} (\Sigma X_{i}^{2} - \overline{X} \Sigma X_{i})$$

$$\hat{\beta} = \frac{\Sigma X_{i} Y_{i} - \overline{Y} \Sigma X_{i}}{\Sigma X_{i}^{2} - \overline{X} \Sigma X_{i}}$$

$$= \frac{n\Sigma X_{i} Y_{i} - \Sigma Y_{i} \Sigma X_{i}}{n\Sigma X_{i}^{2} - (\Sigma X_{i})^{2}} \qquad ...(6.4)$$

104 Econometric Principles

(6.4) can also be written in a somewhat different way. Numerator of (6.4) is:

$$\begin{split} n\Sigma X_{i}Y_{i} - \Sigma X_{i}\Sigma Y_{i} &= n\Sigma X_{i}Y_{i} - \Sigma Y_{i}\Sigma X_{i} + (\Sigma X_{i}\Sigma Y_{i} - \Sigma X_{i}\Sigma Y_{i}) \\ &= n\Sigma X_{i}Y_{i} - \Sigma Y_{i}\Sigma X_{i} - \Sigma X_{i}\Sigma Y_{i} + \Sigma X_{i}\Sigma Y_{i} \\ &= n\Sigma X_{i}Y_{i} - n\overline{X} \Sigma Y_{i} - n\overline{Y}\Sigma X_{i} + n^{2}\overline{X}\overline{Y} \\ &= n(\Sigma X_{i}Y_{i} - \overline{X} \Sigma Y_{i} - \overline{Y}\Sigma X_{i} + n\overline{X}\overline{Y}) \\ &= n\{\Sigma (X_{i} - \overline{X}) (Y_{i} - \overline{Y})\} \end{split}$$

Denominator of (6.4) is:

$$n\Sigma X_i^2 - (\Sigma X_i)^2 = n\Sigma X_i^2 - 2(\Sigma X_i)^2 + (\Sigma X_i)^2$$

$$= n\Sigma X_i^2 - 2\Sigma X_i \Sigma X_i + (\Sigma X_i)^2$$

$$= n\Sigma X_i^2 - 2n\overline{X} \Sigma X_i + n^2 \overline{X}^2$$

$$= n(\Sigma X_i^2 - 2\overline{X}\Sigma X_i + n\overline{X}^2)$$

$$= n\Sigma (X_i - \overline{X})^2$$

$$\hat{\beta} = \frac{n\Sigma (X_i - \overline{X}) (Y_i - \overline{Y})}{n\Sigma (X_i - \overline{X})^2}$$

Now denoting $(X_i - \overline{X})$ as x_i and $(Y_i - \overline{Y})$ as y_i we get;

$$\hat{\beta} = \frac{\sum x_i y_i}{\sum x_i^2} \qquad \dots (6.5)$$

6.4 STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATOR

(i) Linearity

$$\hat{\beta} = \frac{\Sigma(X_i - \overline{X})(Y_i - \overline{Y})}{\Sigma(X_i - \overline{X})^2}$$
 (from 6.5)
$$\hat{\beta} = \frac{\Sigma Y_i (X_i - \overline{X}) - \overline{Y} \Sigma (X_i - \overline{X})}{\Sigma(X_i - \overline{X})^2}$$

$$\hat{\beta} = \frac{\Sigma Y_i (X_i - \overline{X})}{\Sigma (X_i - \overline{X})^2}$$
 [:: $\overline{Y} \Sigma(X_i - \overline{X}) = 0$]
$$\hat{\beta} = \frac{\Sigma Y_i x_i}{\Sigma x_i^2}$$

Let us suppose that,

$$\frac{x_i}{\sum x_i^2} = k_i \ (i = 1, ..., n)$$

$$\hat{\beta} = \sum_{i=1}^{n} k_i Y_i \qquad \dots (6.6)$$

Similarly (6.3) gives $\hat{a} = \overline{Y} - \hat{\beta}\overline{X} = \frac{1}{n} \Sigma Y_i - \overline{X} \Sigma k_i Y_i$

$$\therefore \qquad \hat{\alpha} = \Sigma \left[\frac{1}{n} - \overline{X} k_i \right] Y_i \qquad \dots (6.7)$$

Thus both $\hat{\alpha}$ and $\hat{\beta}$ are expressed as linear functions of the Y's.

(ii) Unbiasedness:

$$\hat{\beta} = \sum k_i Y_i$$

$$= \sum k_i (\alpha + \beta X_i + U_i)$$

$$= \alpha \sum k_i + \beta \sum k_i X_i + \sum k_i U_i$$
(from 6.6)

...(6.8)

$$\therefore \quad k_i = \frac{x_i}{\sum x_i^2} \qquad \qquad \therefore \quad \sum k_i = \frac{\sum x_i}{\sum x_i^2} = 0;$$

and,
$$\sum k_i X_i = \sum k_i (x_i + \overline{X}) = \frac{\sum x_i^2}{\sum x_i^2} = 1$$
 ...(6.9)

Substituting these values in (6.8) we obtain,

$$\hat{\beta} = \beta + \sum k_i U_i \qquad \dots (6.10)$$

$$E(\hat{\beta}) = E(\beta) + \sum k_i E(U_i) = \beta$$

Equation (6.7) gives,

$$\hat{\alpha} = \Sigma \left(\frac{1}{n} - \overline{X} k_i \right) Y_i$$

$$= \Sigma \left(\frac{1}{n} - \overline{X} k_i \right) (\alpha + \beta X_i + U_i)$$

$$= \alpha + \beta \frac{1}{n} \Sigma X_i + \frac{1}{n} \Sigma U_i - \alpha \overline{X} \Sigma k_i - \beta \overline{X} \Sigma k_i X_i - \overline{X} \Sigma k_i U_i$$

$$= \alpha + \beta \overline{X} + \frac{1}{n} \Sigma U_i - \beta \overline{X} - \overline{X} \Sigma k_i U_i$$

$$= \alpha + \frac{1}{n} \Sigma U_i - \overline{X} \Sigma k_i U_i \qquad ...(6.11)$$

$$\therefore E(\hat{\alpha}) = \alpha + \frac{1}{n} \sum E(U_i) - \overline{X} \sum k_i E(U_i)$$

$$E(\hat{\alpha}) = \alpha$$

Thus, we prove that $\hat{\alpha}$ and $\hat{\beta}$ are unbiased estimators of α and β .

(iii) Minimum variance of $\hat{\alpha}$ and $\hat{\beta}$: Now we have to establish that out of the class of linear unbiased estimators of α and β ; $\hat{\alpha}$ and $\hat{\beta}$ possess the smallest sampling variances. For this we shall first obtain the variance of $\hat{\beta}$ and then establish that it is the minimum variance.

Var
$$(\hat{\beta}) = E[(\hat{\beta} - \beta)^2]$$
from equation (6.10)

$$= E[\sum k_i U_i)^2]$$
from equation (4.10)

$$= E[k_1^2 U_1^2 + k_2^2 U_2^2 ... + k_n^2 U_n^2 + 2k_1 k_2 U_1 U_2 + ... + 2k_{n-1} k_n U_{n-1} U_n]$$

$$= E[k_1^2 U_1^2 + k_2^2 U_2^2 ... + k_n^2 U_n^2] + E[2k_1 k_2 U_1 U_2 + ... + 2k_{n-1} k_n U_{n-1} U_n]$$

$$= E\left[\Sigma\left(k_i^2 U_i^2\right)\right] + 2E\left[\sum_{i \neq j} k_i k_j U_i U_j\right]$$

$$= \Sigma k_i^2 E\left(U_i^2\right) + 2\Sigma k_i k_j E\left(U_i U_j\right) = \sigma^2 \Sigma k_i^2 \quad [\because E\left(U_i U_j\right) = 0]$$

$$\Sigma k_i = \frac{\Sigma x_i}{\Sigma x_i^2}$$

$$\therefore \quad \Sigma k_i^2 = \frac{\Sigma x_i^2}{(\Sigma x_i^2)^2} = \frac{1}{\Sigma x_i^2}$$

$$\therefore \quad \text{Var } (\hat{\beta}) = \sigma^2 \Sigma k_i^2 = \frac{\sigma^2}{\Sigma x_i^2} \qquad ...(6.12)$$

$$\text{Var } (\hat{\alpha}) = E\left[\left(\hat{\alpha} - \alpha\right)^2\right]$$

$$= E\left[\Sigma\left(\frac{1}{n} - \overline{X}k_i\right)^2 U_i^2\right] \qquad \text{(from equation 6.11)}$$

$$= \sigma^2 \Sigma\left(\frac{1}{n^2} - \frac{Z}{n} \overline{X}k_i + \overline{X}^2 k_i^2\right)$$

$$= \sigma^2 \left(\frac{1}{n^2} - \frac{Z}{n} \overline{X}k_i + \overline{X}^2 \Sigma k_i^2\right)$$

$$= \sigma^2 \left(\frac{1}{n} + \frac{\overline{X}^2}{\Sigma x_i^2}\right) \qquad \left(\because \Sigma k_i = 0 \text{ and } \Sigma k_i^2 = \frac{1}{\Sigma x_i^2}\right)$$

$$Again; \qquad \frac{1}{n} + \frac{\overline{X}^2}{\Sigma x_i^2} = \frac{\Sigma x_i^2 + n\overline{X}^2}{n\Sigma x_i^2} = \frac{\Sigma X_i^2}{n\Sigma x_i^2}$$

$$\therefore \qquad \text{Var } (\hat{\alpha}) = \sigma^2 \left(\frac{1}{n} + \frac{\overline{X}^2}{\Sigma x_i^2}\right) = \sigma^2 \left(\frac{\Sigma X_i^2}{n\Sigma x_i^2}\right) \qquad ...(6.13)$$

 $\hat{\alpha}$ and $\hat{\beta}$ are also 'Best' estimators: In order to establish that $\hat{\beta}$ possesses the minimum variance property (Best), we compare its variance with that of some alternative, unbiased estimator of β , say β^* .

Suppose
$$\beta^* = \sum w_i Y_i$$
 where constant $w_i \neq k_i$, but $w_i = k_i + c_i$

$$\therefore \qquad \beta^* = \sum w_i (\alpha + \beta X_i + U_i)$$

$$= \alpha \sum w_i + \beta \sum w_i X_i + \sum w_i U_i \qquad ...(6.14)$$

$$E(\beta^*) = \alpha \Sigma w_i + \beta \Sigma w_i X_i \qquad [\because E(U_i) = 0].$$

Since β^* is assumed to be an unbiased estimator which implies that $\Sigma w_i = 0$ and $\Sigma w_i X_i = 1$ in the above equation.

But,
$$\Sigma w_i = \Sigma (k_i + c_i) = \Sigma k_i + \Sigma c_i$$

 $\Sigma c_i = 0 \quad \because \quad \Sigma k_i = \Sigma w_i = 0$
Again, $\Sigma w_i X_i = \Sigma (k_i + c_i) X_i = \Sigma k_i X_i + \Sigma c_i X_i$
 $\Sigma c_i X_i = 0 \quad \because \quad \Sigma w_i X_i = 1 \text{ and } \sum k_i X_i = \sum k_i X_i = 1.$
Also $\Sigma c_i X_i = \Sigma c_i X_i + \overline{X} \Sigma c_i = 0$

Thus we have shown that if β^* is to be unbiased estimator then following results must hold true.

$$\Sigma w_i = 0, \ \Sigma w_i X_i = 1, \ \Sigma c_i = 0, \ \Sigma c_i X_i = \Sigma c_i x_i = 0$$
 ...(6.15)

The variance of this assumed estimator β^* is then

Var
$$(\beta^*) = E (\beta^* - \beta)^2$$
]

$$= E \left[(\Sigma w_i U_i)^2 \right]$$

$$= \sigma^2 \Sigma w_i^2$$
(from 6.14)

[By following exactly the same arguments that we used in obtaining Var $(\hat{\beta})$.]

$$\therefore \text{ Var } (\beta^*) = \sigma^2 \Sigma w_i^2$$

$$\text{But } \sum w_i^2 = \sum (k_i + c_i)^2 = \sum k_i^2 + 2\sum k_i c_i + \sum c_i^2$$

$$\sum k_i c_i = \sum c_i \cdot \frac{x_i}{\sum x_i^2} = \frac{\sum c_i x_i}{\sum x_i^2} = 0$$
(By 6.15)

$$\sum w_i^2 = \sum k_i^2 + \sum c_i^2; \text{ so that}$$

$$\text{Var } (\beta^*) = \sigma^2 \left(\sum k_i^2 + \sum c_i^2 \right) = \sigma^2 \sum k_i^2 + \sigma^2 \sum c_i^2$$

$$Var (\beta^*) = Var (\hat{\beta}) + \sigma^2 \Sigma c_i^2$$

 Σc_i^2 must be positive; so that Var (β^*) > Var $(\hat{\beta})$

In case $\Sigma c_i^2 = 0$, then $\text{Var}(\beta^*) = \text{Var}(\hat{\beta})$.

This proves that $\hat{\beta}$ possesses minimum variance property.

In the similar way we can prove that the least squares constant intercept $\hat{\alpha}$ possesses minimum variance, in other words it is also a 'Best' estimator.

We take a new estimator α^* , which we assume to be a linear function of the Y_i 's, with weights $w_i = k_i + c_i$, as earlier.

Thustration, 9—A sample of 20 observations on X and Y gave the following data:—

$$\Sigma Y = 21.9$$
 $\Sigma (Y - \overline{Y})^2 = 86.9$
 $\Sigma X = 186.2$ $\Sigma (X - \overline{X})^2 = 215.4$, $\Sigma (X - \overline{X}) (Y - \overline{Y}) = 106.4$

Answer the followings:-

- (a) Estimate the regression of Y on X.
- (b) Estimate the regression of X on Y
- (c) Compute the mean value of Y corresponding to X=10.

(d) Compute the mean value of X corresponding to Y=1:5 (M.A., Meerut, 1975)

Solution: (a) Let regression line of Y on X be
$$Y = \alpha + \beta X$$

we know that

$$\hat{\beta}_{YX} = \frac{\sum (X - \overline{X}) (Y - \overline{Y})}{\sum (X - \overline{X})^2} = \frac{106.4}{215.4} = 0.49$$

$$\overline{X} = \frac{\sum X}{n} = \frac{186.2}{20} = 9.31$$

$$\overline{Y} = \frac{\sum Y}{n} = \frac{21.9}{20} = 1.09$$

$$\hat{\alpha} = \overline{Y} - \hat{\beta} \ \overline{X} = 1.09 - (0.49 \times 9.31) = -3.47$$

Thus, estimated regression line of Y on X is Y = -3.47 + 0.49 X

(b) Now, let the regreression line of X on Y be $X=\gamma+\delta Y$

$$\hat{\delta}_{XY} = \frac{\Sigma' (X - \overline{X}) (Y - \overline{Y})}{\Sigma (Y - \overline{Y})^2} = \frac{106.4}{86.9} = 1.22$$

$$\hat{y} = \bar{X} - \hat{\delta} \ \bar{Y} = 9.31 - (1.22 \times 1.09) = 7.98$$

Thus estimated regression line of X on Y is

$$X=7.98+1.22 Y$$

(c) when X=10, then $Y=-3.47+(0.49\times 10)=1.43$

(d) when Y=1.5then $X=7.98+(1.22\times1.5)=9.81$

Mustration 10—The following data were obtained in a sample study:—

$$\Sigma X = 56$$
, $\Sigma Y = 40$, $\Sigma X^2 = 524$, $\Sigma Y^2 = 256$, $\Sigma XY = 364$, $N = 20$

Answer all of the following:-

- (a) Estimate the regression line $Y = \alpha + \beta X$.
- (b) Estimate the regression line $X = \gamma + \delta Y$
- (c) Compute the value of K corresponding to a value 7 for X
- (d) Compute the value of X corresponding to a value 3 for Y (M.A., Meerus, 1975)

Solution: (a) Estimated regression line is

$$\hat{Y} = \alpha + \beta X$$

where,

$$\hat{\beta} = \frac{\sum XY - \frac{\sum XY^2}{n}}{\sum X^2 - \frac{(\sum X)^2}{n}}$$

$$= \frac{364 - \frac{56 \times 40}{20}}{524 - \frac{56 \times 56}{20}} = \frac{252}{367 \cdot 2} = 0.686$$

$$\overline{X} = \frac{\Sigma X}{n} = \frac{56}{20} = 2.8, \quad \overline{Y} = \frac{\Sigma Y}{n} = \frac{40}{20} = 2$$

$$\alpha = \overline{Y} - \beta \overline{X} = 2 - 0.686 \times 2.8 = 2 - 1.921 = 0.079$$

Thus estimated regression line becomes

$$Y = 0.079 + 686X$$

(b) Estimated regression line is

$$X = \gamma + \delta Y$$

where,

$$\hat{\delta} = \frac{\sum XY - \frac{\sum X \cdot \sum Y}{n}}{\sum Y^2 - \frac{(\sum Y)^2}{n}}$$

$$=\frac{364 - \frac{56 \times 40}{20}}{256 - \frac{40 \times 40}{20}} = \frac{252}{256 - 80}$$

$$=\frac{252}{176}=1.43$$

 $\hat{\gamma} = \bar{X} - \hat{\delta} \ \bar{Y} = 2.8 - 1.43 \times 2 = 2.8 - 2.86 = -0.06$

Now the estimated regression line becomes

$$X = -0.06 + 1.43 \text{ Y}$$

(c) when X=7then $Y=0.079+.686\times7=4.881$

(d) when
$$Y=3$$

then $X=-0.06+1.43\times 3=4.23$